Chapter

Overview of C

1.1 HISTORY OF C i

‘C’ seems a strange name for a programming language. But this strange sounding language is one of
the most popular computer languages today because it is a structured, high-level, machine independ-
ent language. It allows software developers to develop programs without worrying about the hard-
ware platforms where they will be implemented.

The root of all modern languages is ALGOL, introduced in the early 1960s. ALGOL was the first
computer language to use a block structure. Although it never became popular in USA, it was widely
used in Europe. ALGOL gave the concept of structured programming to the computer science com-
munity. Computer scientists like Corrado Bohm, Guiseppe Jacopini and Edsger Dijkstra popularized
this concept during 1960s. Subsequently, several languages were announced.

In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming
Language) primarily for writing system software. In 1970, Ken Thompson created a language using
many features of BCPL and called it simply B. B was used to create early versions of UNIX operat-
ing system at Bell Laboratories. Both BCPL and B were “typeless” system programming languages.

C was evolved from ALGOL, BCPL and B by Dennis Ritchie at Bell Laboratories in 1972. C uses
many concepts from these languages and added the concept of data types and other powerful features.
Since it was developed along with the UNIX operating system, it is strongly associated with UNIX.
This operating system, which was also developed at Bell Laboratories, was coded almost entirely in
C. UNIX is one of the most popular network operating systems in use today and the heart of the
Internet data superhighway.

For many years, C was used mainly in academic environments, but eventually with the release of
many C compilers for commercial use and the increasing popularity of UNIX, it began to gain wide-
spread support among computer professionals. Today, C is running under a variety of operating sys-
tem and hardware platforms. :

During 1970s, C had evolved into what is now known as “traditional C”. The language became
more popular after publication of the book ‘The C Programming Language’ by Brian Kerningham
and Dennis Ritchie in 1978. The book was so popular that the language came to be known as “K&R
C” among the programming community. The rapid growth of C led to the development of different

2 | Pfogramming in ANSI C

versions of the language that were similar but often incompatible. This posed a serious problem for
system developers. . :

To assure that the C language remains standard, in 1983, American National Standards Institute
(ANSI) appointed a technical committee to define a standard for C. The committee approved a ver-
sion of C in 1989 which is now known as ANSI C. It was then approved by the International Stand-
ards Organization (ISO) in 1990. The standard was updated in 1999. The history of ANSI C is
illustrated in Fig. 1.1. '

1960 ALGOL | International Group
1967 V——BE:; Martin Richards
1970 B Ken Thompson
1972 Traditional C Dennis Ritchie
1978 K&R C Kernighan and Ritchie
1989 ANSIC | ANSI Committee
1990 ANSIISOC | ISO Committee

i

Y

Fig. 1.1 History of ANSI C

1.2 IMPORTANCE OF C

The increasing popularity of C is probably due to its many desirable qualities. It is a robust language
whose rich set of built-in functions and operators can be used to write any complex program. The C
compiler combines the capabilities of an assembly language with the features of a high-level lan-
guage and therefore it is well suited for writing both system software and business packages. In fact,
many of the C compilers available in the market are written in C.

Programs written in C are efficient and fast. This is due to its variety of data types and
powerful operators. It is many times faster than BASIC. For example, a program to increment a
variable from O to 15000 takes about one second in C while it takes more than 50 seconds in an
interpreter BASIC.

Overview of C I 3

There are only 32 keywords and its strength lies in its built-in functions. Several standard func-
tions are available which can be used for developing programs.

C is highly portable. This means that C programs written for one computer can be run on another
with little or no modification. Portability is important if we plan to use a new computer with a differ-
ent operating system. ‘

C language is well suited for structured programming, thus requiring the user to think of a problem
in terms of function modules or blocks. A proper collection of these modules would make a complete
program. This modular structure makes program debugging, testing and maintenance easier.

Another important feature of C is its ability to extend itself. A C program is basically a collection
of functions that are supported by the C library. We can continuously add our own functions to C
library. With the availability of a large number of functions, the programming task becomes simple.

Before discussing specific features of C, we shall look at some sample C programs, and analyze
and understand how they work.

1.3 SAMPLE PROGRAM 1: PRINTING A MESSAGE

Consider a very simple program given in Fig. 1.2.

main()

{

YA — printing beginS.... */
printf("I see, I remember");

A —— printing ends....... */

}

Fig. 1.2 A program to print one line of text

This program when executed will produce the following output:
I see, I remember

Let us have a close look at the program. The first line informs the system that the name of the
program is main and the execution begins at this line. The main() is a special function used by the C
system to tell the computer where the program starts. Every program must have exactly one main
function. If we use more than one main tunction, the compiler cannot tell which one marks the begin-
ning of the program. '

The empty pair of parentheses immediately following main indicates that the function main has no
arguments (or parameters). The concept of arguments will be discussed in detail later when we
discuss functions (in Chapter 9).

The opening brace “{ " in the second line marks the beginning of the function main and the closing
brace “}” in the last line indicates the end of the function. In this case, the closing brace also marks
the end of the program. All the statements between these two braces form the function body. The
function body contains a set of instructions to perform the given task.

In this case. the function body contains three statements out of which only the printf line is an
executable statement. The lines beginning with /* and ending with */ are known as comment lines.
These are used in a program to enhance its readability and understanding. Comment lines are not
executable statements and therefore anything between /* and */ is ignored by the compiler. In gen-
eral, a comment can be inserted wherever blank spaces can occur—at the beginning, middle or end of
a line—"but never in the middle of a word ™.

4,| Programming in ANSI C

Although comments can appear anywhere, they cannot be nested in C. That means, we cannot have
comments inside comments. Once the compiler finds an opening token, it ignores everything until it
finds a closing token. The comment line

/*====/*====*/====*/
is not valid and therefore results in an error.

Since comments do not affect the execution speed and the size of a compiled program, we should
use them liberally in our programs. They help the programmers and other users in understanding the
various functions and operations of a program and serve as an aid to debugging and testing. We shall
see the use of comment lines more in the examples that follow.

Let us now look at the printf() function, the only executable statement of the program.

printf("I see, I remember");

printf is a predefined standard C function for printing output. Predefined means that it is a function
that has already been written and compiled, and linked together with our program at the time of
linking. The concepts of compilation and linking are explained later in this chapter. The printf func-
tion causes everything between the starting and the ending quotation marks to be printed out. In this
case, the output will be: '

I see, I remember

Note that the print line ends with a semicolon. Every statement in C should end with a semicolon (;)
mark.
Suppose we want to print the above quotation in two lines as

I see,
I remember!

This can be achieved by adding another printf function as shown below:
printf(I see, \n");

[pm’ntf("I remember !”);]

The information contained between the parentheses is called the argument of the function. This
argument of the first printf function is “ I see, \n” and the second is “I remember!”. These arguments
are simply strings of characters to be printed out.

Notice that the argument of the first printf contains a combination of two characters \ and n at the
end of the string. This combination is collectively called the newline character. A newline character
instructs the computer to go to the next (new) line. It is similar in concept to the carriage return key on
a typewriter. After printing the character comma (,) the presence of the newline character \n causes
the string “I remember!” to be printed on the next line. No space is allowed between \ and n.

If we omit the newline character from the first printf statement, then the output will again be a
single line as shown below.

I see,] remember !

This is similar to the output of the program in Fig. 1.2. However, note that there is no space
between , and L. _ '

It is also possible to produce two or more lines of output by one printf statement with the use of
newline character at appropriate places. For example, the statement

printf("I see,\n I remember !");

Overview of C | 5

will output

I see,
I remember!
while the statement
printf{ "I\n.. see,\n.. .. . I\N.. remember 1");
will print out
I
. see
|
. remember !

NOTE: Some authors recommend the inclusion of the statement
#include <stdio.h>

at the beginning of all programs that use any input/output library functions. However, this is not
necessary for the functions printf and scanf which have been defined as a part of the C language. See
Chapter 4 for more on input and output functions.

Before we proceed to discuss further examples, we must note one important point. C does make a
distinction between uppercase and lowercase letters. For example, printf and PRINTF are not the
same. In C, everything is written in lowercase letters. However, uppercase letters are used for sym-
bolic names representing constants. We may also use uppercase letters in output strings like “I SEE”
and “I REMEMBER”

The above example that printed I see, I remember is one of the simplest programs. Figure 1.3
highlights the general format of such simple programs. All C programs need a main function.

@ The main Function >

The main is a part of every C program. C permits different forms of main state-
ment. Following forms are allowed.

* main()

e int main()

¢ void main()

¢ main(void)

e void main(void)
¢ int main(void)

The empty pair of parentheses indicates that the function has no arguments. This
may be explicitly indicated by using the keyword void inside the parentheses.
We may also specify the keyword int or void before the word main. The key-
word void means that the function does not return any information to the operat-
ing system and int means that the function returns an integer value to the operat-
G ing system. When int is specified, the last statement in the program must be
J

“return 0”. For the sake of simplicity, we use the first form in our programs.

6| Programming in ANSI C

i main () Function name

f‘ | . ~— Start of program

E -~ - Program statements
- .

| } End of program

Fig. 1.3 Format of simple C programs

L BAMPLL PROGRAM 2: ADDING TWO NI A

Consider another program, which performs addition on two numbers and displays the result. The

complete program is shown in Fig. 1.4.

/* Programm ADDITION
/* Written by EBG
main() /*
{ /*
int number; /*
float amount; /*
/*
number = 100; /*
/*
amount = 30.75 + 75.35; /*
printf("%d\n",number); /*
printf("%5.2f",amount); /*
} /*

line-1
line-2
line-3
line-4
line-5
Tine-6
line-7
line-8
Tine-9
Tine-10
line-11
line-12
line-13

*/
*/’
*/
*/
*/
*/
*/
*/
*/
*/
*/‘
*/
*/

Fig. 1.4 Program to add two numbers

This program when executed will produce the following output:
100
106.10

Thefhﬁtwolhwsofmepngnnnamconnnanhne&InsagoodpnwﬁceKnuecomnmnﬂhwsm

the beginning to give information such as name of the program, author, date, etc. Comment characters

are also used in other lines to indicate line numbers.

The words number and amount are variable names that are used to store numeric data. The
numeric data may be either in integer form or in real form. In C, all variables should be declared to
tell the compiler what the variable names are and what type of data they hold. The variables must be

declared before they are used. In lines 5 and 6, the declarations
int number;

float amount;

Overview of C I 7

tell the compiler that number is an integer (int is the abbreviation for integer) and amount is a
floating (fleat) point number. Declaration statements must appear at the beginning of the functions as
shown in Fig.1.4. Al declaration statements end with a semicolon. C supports many other data types
and they are discussed in detail in Chapter 2.

The words such as int and float are called the keywords and cannot be used as variable names. A
list of keywords is given in Chapter 2.

Data is stored in a variable by assigning a data value to it. This is done in lines 8 and 10. In line-
8, an integer value 100 is assigned to the integer variable number and in line- 10, the result of addi-
tion of two real numbers 30.75 and 75.35 is assigned to the floating point variable amount. The
statements

n

100;
30.75 + 75.35;

are called the assignment statements. Every assignment statement must have a semicolon at the end.
The next statement is an output statement that prints the value of number. The print statement

number

amount

printf("%d\n", number);

contains two arguments. The first argument *%d” tells the compiler that the value of the second
argument number should be printed as a decimal integer. Note that these arguments are separated
by a comma. The newline character \n causes the next output to appear on a new line.

The last statement of the program

printf("%5.2f", amount);
prints out the value of amount in floating point format. The format specification %5.2f tells the
compiler that the output must be in floating point, with five places in all and two places to the right of
the decimal point.

1.5 SAMPLE PROGRAM 3: INTEREST CALCULATION

The program in Fig. 1.5 calculates the value of money at the end of each year of investment. assuming
an interest rate of 11 percent and prints the year, and the corresponding amount, in two columns. The
output is shown in Fig. 1.6 for a period of 10 years with an initial investment.of 5000.00. The pro-
gram uses the following formula:

Value at the end of year = Value at start of year (1 + interest rate)

In the program, the variable value represents the value of money at the end of the year while
amount represents the value of money at the start of the year. The statement

amount = value ;

makes the value at the end of the current year as the value at start of the next year.

[¥ INVESTMENT PROBLEM —m™/
#define PERIOD 10

#define PRINCIPAL 5000.00

/¥—————— MAIN PROGRAM BEGINS ——— @ ——*/
main() :

8' Programming in ANSI C

{ /*————— DECLARATION STATEMENTS —_—/
int year;
float amount, value, inrate;
/*—————— ASSIGNMENT STATEMENTS —
amount = PRINCIPAL;
inrate = 0.11;
year = 0;
/*—————— COMPUTATION STATEMENTS —%
/*——— COMPUTATION USING While LOOP —_—/
while(year <= PERIOD)

{ printf("%2d %8.2f\n",year, amount);
value = amount + inrate * amount
year = year + 1;
amount = value;
}
/*—————— while LOOP ENDS —_—/

}
/*————————— PROGRAM ENDS

*/

Fig. 1.5 Program for investment problem

Let us consider the new features introduced in this program. The second and third lines begin with
mhmmmMmdmm“AMEmNHMNmmnkﬁMSWMemawmhﬁmmmmmﬂxmemmem&
gram. Whenever a symbolic name is encountered, the compiler substitutes the value associated with
the name automatically. To change the value, we have to simply change the definition. In this exam-
ple, we have defined two symbolic constants PERIOD and PRINCIPAL and assigned values 10
and 5000.00 respectively. These values remain constant throughout the execution of the program.

5000.00
5550.00
6160.50
6838.15
7590.35
8425.29
9352.07
10380.00
11522.69
12790.00
14197.11

W O N & B W N = O

—
o

Fig. 1.6 Output of the investment program

Overview of C | 9

9 The #define Directive)

A #define is a preprocessor compiler directive and not a statement. Therefore
#define lines should not end with a semicolon. Symbolic constants are generally
written in uppercase so that they are easily distinguished from lowercase vari-
able names. #define instructions are usually placed at the beginning before the

main() function. Symbolic constants are not declared in declaration section. Pre-
G processor directions are discussed in Chapter 14. J

We must note that the defined constants are not variables. We may not change their values within
the program by using an assignment statement. For example, the statement

PRINCIPAL = 10000.00;
is illegal.

The declaration section declares year as integer and amount, value and inrate as floating point
numbers. Note all the floating-point variables are declared in one statement. They can also be de-
clared as

float amount;
float value;
float inrate;

When two or more variables are declared in one statement, they are separated by a comma.

All computations and printing are accomplished in a while loop. while is a mechanism for evalu-
ating repeatedly a statement or a group of statements. In this case as long as the value of year is less
than or equal to the value of PERIOD, the four statements that follow while are executed. Note that
these four statements are grouped by braces. We exit the loop when year becomes greater than
PERIOD. The concept and types of loops are discussed in Chapter 6.

C supports the basic four arithmetic operators (-, +, *, /) along with several others. They are
discussed in Chapter 3.

1.6 SAMPLE PROGRAM 4: USE OF SUBROUTINES . ., .

So far, we have used only printf function that has been provided for us by the C system. The program
shown in Fig. 1.7 uses a user-defined function. A function defined by the user is equivalent to a
subroutine in FORTRAN or subprogram in BASIC.

/*———————— PROGRAM USING FUNCTION —— ——*/

int mul (int a, int b); /*——— DECLARATION */

/*————— MAIN PROGRAM BEGINS —————*/
main ()

{

int a, b, C;

a = 5;

10 I Programming in ANSI C

b = 10;
mul (a,b);

]

printf ("multiplication of %d and %d is %d",a,b,c);

J* — MAIN PROGRAM ENDS
MUL() FUNCTION STARTS —_—/
int mul (int x, int y)
int p;
{
p = x*y;
return(p);

/* ——————— MUL () FUNCTION ENDS —_— %

/

Fig. 1.7 A program using a user-defined function

Figure 1.7 presents a very simple program that uses a mul () function. The program will print the
following output.

Multiplication of 5 and 10 is 50
The mul () function multiplies the values of x and y and the result is returned to the main ()
function when it is called in the statement
¢ = mul (a, b);

The mul () has two arguments x and y that are declared as integers. The values of a and b are
passed on to x and y respectively when the function mul () is called. User-defined functions are
considered in detail in Chapter 9.

L7 SAMPLE PROGRAM 5: USE OF MATH FUNCTIONS

We often use standard mathematical functions such as cos, sin. exp, etc. We shall see now the use of
a mathematical function in a program. The standard mathematical functions are defined and keptasa
part of C math library. If we want to use any of these mathematical functions, we must add an
#include instruction in the program. Like #define, it is also a compiler directive that instructs the
compiler to link the specified mathematical functions from the library. The instruction is of the form

#include <math.h>

math.h is the filename containing the required function. Figure 1.8 illustrates the use ot cosine func-
tion. The program calculates cosine values for angles 0, 10, 20............. 180 and prints out the
results with headings.

- Another #include instruction that is often required is

#include <stdio.h>

stdio.h refers to the standard 1/O header file containing standard input and output functions

Overview of C

Output

/* PROGRAM USING COSINE FUNCTION
#include <math.h>

#define PI 3.1416

#define MAX 180

main ()

{

int angle;
float x,y;

angle = 0;
printf(" Angle Cos(angle)\n\n");.

while(angle <= MAX)
{

il

X (PI/MAX)*angle;

y = cos(x);

printf("%15d %13.4f\n", angle, y);
angle = angle + 10;

Angle Cos(angle)
0 1.0000
10 0.9848
20 0.9397
30 0.8660
40 0.7660
50 0.6428
60 0.5000
70 0.3420
80 0.1736
90 -0.0000
100 -0.1737
110 -0.3420
120 -0.5000
130 -0.6428
140 -0.7660
150 -0.8660
160 -0.9397
170 -0.9848
180 -1.0000

*/

Fig. 1.8 Program using a math function

|11

12 | Programming in ANSI C

@ The #include Directive)

As mentioned earlier, C programs are divided into modules or functions. Some
functions are written by users like us and many others are stored in the C library.
Library functions are grouped category-wise and stored in different files known
as header files. If we want to access the functions stored in the library, it is
necessary to tell the compiler about the files to be accessed.

This is achieved by using the preprocessor directive #include as follows:

#include <filename >

filename is the name of the library file that contains the required function defini-
G tion. Preprocessor directives are placed at the beginning of a program. J

A list of library functions and header files containing them are given in Appendix III.

1.8 BASIC STRUCTURE OF C PROGRAMS

The examples discussed so far illustrate that a C program can be viewed as a group of building blocks
called functions. A function is a subroutine that may include one or more statements designed to
perform a specific task. To write a C program, we first create functions and then put them together. A
C program may contain one or more sections shown in Fig. 1.9.

I Documentation Section)

Link Section

Definition Section

Global Declaration Section

main () Function Section
{

v N
Declaration part ;

Executable part |
. tihdobiiunthill s
I e -
Subprogram section

Function 1

Function 2

- (User-defined functions)
Fl]gct_ion n)

Fig. 1.9 An overview of a C program

Overview of C | 13

The documentation section consists of a set of comment lines giving the name of the program, the
author and other details, which the programmer would like to use later. The link section provides
instructions to the compiler to link functions from the system library. The definition section defines
all symbolic constants.

There are some variables that are used in more than one function. Such variables are called global
variables and are declared in the global declaration section that is outside of all the functions. This
section also declares all the user-defined functions.

Every C program must have one main() function section. This section contains two parts, declara-
tion part and executable part. The declaration part declares all the variables used in the executable
part. There is at least one statement in the executable part. These two parts must appear between the
opening and the closing braces. The program execution begins at the opening brace and ends at the
closing brace. The closing brace of the main function section is the logical end of the program. All
statements in the declaration and executable parts end with a semicolon.

The subprogram section contains all the user-defined functions that are called in the main func-
tion. User-defined functions are generally placed immediately after the main function, although they
may appear in any order.

All sections, except the main function section may be absent when they are not required.

1.9 PROGRAMMING STYLE

Unlike some other programming languages (COBOL, FORTRAN, etc.,) C is a free-form language.
That is, the C compiler does not care, where on the line we begin typing. While this may be a licence
for bad programming, we should try to use this fact to our advantage in developing readable pro-
grams. Although several alternative styles are possible, we should select one style and use it with
total consistency.

First of all, we must develop the habit of writing programs in lowercase letters. C program state-
ments are written in lowercase letters. Uppercase letters are used only for symbolic constants.

Braces group program statements together and mark the beginning and the end of functions. A
proper indentation of braces and statements would make a program easier to read and debug. Note
how the braces are aligned and the statements are indented in the program of Fig. 1.5.

Since C is a free-form language, we can group statements together on one line. The statements

a =b;
x=y+1
z=a+X;

can be written on one line as
a=Db; x = y+tl; z = a+x;
The program
main()
{
printf("hello C");

14| Programming in ANSI C

mmay be written in one nue like
main() {printf("Hello C")};

However, this style make the program more difficult to understand and should not be used. In this
book. each statement is written on a separate line.

The generous use of comments inside a program cannot be overemphasized. Judiciously inserted
comments not only increase the readability but also help to understand the program logic. This is very
important for debugging and testing the program.

130 ERLCUTING 4 O PEOORAM

Executing a program written in C involves a series of steps. These are:
1. Creating the program
2. Compiling the program
3. Linking the program with functions that are needed from the C library
4. Executing the program.

Figure 1.10 illustrates the process of creating, compiling and executing a C program. Although
these steps remain the same irrespective of the operating system, system commands for implementing
the steps and conventions for naming files may differ on different systems.

An operating system is a program that controls the entire operation of a computer system. All
input/out operations are channeled through the operating system. The operating system, which is an
interface between the hardware and the user, handles the execution of user programs.

The two most popular operating systems today are UNIX (for minicomputers) and MS-DOS (for
microcomputers). We shall discuss briefly the procedure to be followed in executing C programs
under both these operating systems in the following sections.

PRl OUNIX SYSTEM
Creating b program

Once we load the UNIX operating system into the memory, the computer is ready to receive program.
The program must be entered into a file. The file name can consist of letters. digits and special
characters, foliowed by a dot and a letter ¢. Examples of valid file names are:

hello.c

program.c

ebgl.c

The file is created with the help of a text editor, either ed or vi. The command for calling the editor

and creating the file is

ed filename

It the file existed betfore. it is loaded. If it does not yet exist, the file has to be created so that it is
ready to receive the new program. Any corrections in the program are done under the editor. (The
name of your system’s editor may be different. Check your system manual.)

Overview of C | 15

| System Ready |

_ Y
Program Code }—-»{ Enter Program j

i

“i Source Program

[Edt
| Source Program I !

B

G compler | Jd_fi?"}‘ﬁ*‘ |
—mwg.,mt i Source Program

Bttt el
X ,
e ‘ |

- Syntax Yes .

No Object Code ‘
Y ‘
S, S J
g Linkwith | |
EXi‘em leravrxvj o)‘L, System Library
R

i Executable Object Code

Inwut Dartér l» Execute !
P r ‘ Object Code |

S—

X

PN i
Data Error 7 . Logic Error !
e~ Logic and Data\R__g —
~,, Errors ? e
1

w No Errors

|CORRECT OUTPUT

:
' Stop |

Fig. 1.10 Process of compiling and running a C program

When the editing is over, the file is saved on disk. It can then be referenced any time later by its file
name. The program that is entered into the file is known as the source program, since it represents
the original form of the program. ’

Connpibing aoo Lankang
Let us assume that the source program has been created in a file named ebgl.c. Now the program is
ready for compilation. The corpilation command to achieve this task under UNIX is

cc ebgl.c

The source program instructions are now translated into a form that is suitable for execution by the
computer. The translation is done after examining each instruction for its correctness. If everything is

16| Programming in ANSI C

alright, the compilation proceeds silently and the translated program is stored on another file with the
name ebg/.o. This program is known as object code.

Linking is the process of putting together other program files and functions that are required by the
program. For example, if the program is using exp() function, then the object code of this function
should be brought from the math library of the system and linked to the main program. Under
UNIX, the linking is automatically done (if no errors are detected) when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed out and
the compilation process ends right there. The errors should be corrected in the source program with
the help of the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored automatically
in another file named a.out.

Note that some systems use different compilation command for linking mathematical functions.

cc filename - 1m
is the command under UNIPLUS SYSTEM V operating system.

Executing the Program

Execution is a simple task. The command
a.out

would load the executable object code into the computer memory and execute the instructions. During
execution, the program may request for some data to be entered through the keyboard. Sometimes the
program does not produce the desired results. Perhaps, something is wrong with the program logic or
data. Then it would be necessary to correct the source program or the data. In case the source pro-
gram is modified, the entire process of compiling, linking and executing the program should be re-
peated.

Creating Your Own Executable File

Note that the linker always assigns the same name a.out. When we compile another program, this
file will be overwritten by the executable object code of the new program. If we want to prevent
from happening, we should rename the file immediately by using the command.

mv a.out name
We may also achieve this by specifying an option in the cc command as follows:
cC -0 name source-file

This will store the executable object code in the file name and prevent the old file a.out from being
destroyed.

Mutltiple Source Files

To compile and link multiple source program files, we must append all the files names to the cc
command.
cc filename-1l.c ... filename-n.c

Overview of C I 17

These files will be separately compiled into object files called
filename-i.o

and then linked to produce an executable program file a.out as shown in Fig. 1.11.
It is also possible to compile each file separately and link them later. For example, the commands

cc —c modl.c
cc —¢ mod2.c

will compile the source files modI.c and mod2.c into objects files modl.o and mod2.0. They can be
linked together by the command

cc modl.o mod2.0
we may also combine the source files and object files as follows:
cc modl.c mod2.0

Only mod]I.c is compiled and then linked with the object file mod2.0. This approach is useful when
one of the multiple source files need to be changed and recompiled or an already existing object files
is to be used along with the program to be compiled.

Compiler and
J ' preprocessor
o |} o | I o | [tibray |
) ~. ' e /
S - /
N A

e / Linker
[a.out }<——~—W~~—~~-~-~~/

Fig. 1.11 Compilation of multiple files

1.12 MS-DOS SYSTEM

The program can be created using any word processing software in non-document mode. The file
name should end with the characters “.c” like program.c, pay.c, etc. Then the command

MSC pay.c

under MS-DOS operating system would load the program stored in the file pay.c and generate the

object code. This code is stored in another file under name pay.obj. In case any language errors are

found, the compilation is not completed. The program should then be corrected and compiled again.
The linking is done by the command

LINK pay.obj

which generates the executable code with the tilename pay.exe. Now the command
pay

would execute the program and give the results.

18

Programming in ANSI C

Just Remember

Every C program requires a main() function (Use of more than one main() is

illegal). The place main is where the program execution begins.

The execution of a function begins at the opening brace of the function and ends

at the corresponding closing brace.

C programs are written in lowercase letters. However, uppercase letters are used

for symbolic names and output strings.

All the words in a program line must be separated from each other by at least one

space, or a tab, or a punctuation mark.

Every program statement in a C language must end with a semicolon.

All variables must be declared for their types before they are used in the pro-

gram.

) We must make sure to include header files using #include directive when the
program refers to special names and functions that it does not define.

Z) Compiler directives such as define and include are special instructions to the
compiler to help it compile a program. They do not end with a semicolon.

#3 The sign # ofcompiler directives must appear in the first column of the line.

#3 When braces are used to group statements, make sure that the opening brace has
a corresponding closing brace.

Z3 Cis a free-form language and therefore a proper form of indentation of various
sections would improve legibility of the program.

#3 A comment can be inserted almost anywhere a space can appear. Use of appro-
priate comments in proper places increases readability and understandability of
the program and helps users in debugging and testing. Remember to match the
symbols /* and */ appropriately.

hhd

g

oy

REVIEW QUESTIONS

I.1 State whether the following statements are true or false.

(a)
(b)
(¢)
(d)
(e)
()
(g)
(h)
(1)

()

Every line in a C program should end with a semicolon.

In C language lowercase letters are significant.

Every C program ends with an END word.

main() is where the program begins its execution.

A line in a program may have more than one statement.

A printf statement can generate only one line of output.

The closing brace of the main() in a program is the logical end of the program.

The purpose of the header file such as stdio.h is to store the source code of a program.
Comments cause the computer to print the text enclosed between /* and */ when ex-
ecuted.

Syntax errors will be detected by the compiler.

1.2 Which of the following statements are rrue?

(a)

Every C program must have at least one user-defined function.

Overview of C 19

(b) Only one function may be named main().
(¢} Declaration section contains instructions tu the computer.
1.3 Which of the following statements about comments are fulse?
(a) Use of comments reduces the speed of execution of a program.
(b) Comments serve as internal documentation for programmers.
(¢} A comment can be inserted in the middle of a statement.
(d) InC.we can have comments inside comments.
I.4 Fill in the blanks with appropriate words in each of the following statements.
(a) Every program statement in a C program must end witha _
________ __Function is used to display the output on the screen.
(¢) The ___header file contains mathematical functions.
(d) The escape sequence character “causes the cursor to move to the next line
on the screen.
1.5 Remove the semicolon at the end of the printf statement in the program of Fig. 1.2 and ex-
ecute it. What is the output?
1.6 In the Sample Program 2, delete fine-5 :ind execute the program. How helpful is the error

message” :
1.7 Modity the Sample Program 3 to display the following output:
Year Amount
1 5500.00
2 6160.00
10 14197.11

1.8 Find errors, if any, in the following program:
/* A simple program
int main()

{

7

/* Does nothing */
}
1.9 Find errors, if any, in the following program:

#include (stdio.h)
void main{void)
{
print{"Hello C");
}
1.10 Find errors. if any, in the following program:

Include <math.h>

main { }

(
FLOAT X
X = 2.5

Y = exp(x);

20 Programming in ANSI C

Print(x,y);
)

.11 Why and when do we use the #define directive?
.12 Why and when do we use the #include directive?
.13 What does void main(void) mean?
1.14 Distinguish between the following pairs:
(a) main() and void main(void)
(b) int main() and void main()
.15 Why do we need to use comments in programs?
.16 Why is the look of a program is important?
.17 Where are blank spaces permitted in a C program?
.18 Describe the structure of a C program.
-19 Describe the process of creating and executing a C program under UNIX system.
1.20 How do we implement multiple source program files?

PROGRAMMING EXERCISES

1.1 Write a program that will print your mailing address in the following form:

First line : Name
Second line Door No, Street
Third line : City, Pin code

1.2 Modify the above program to provide border lines to the address.
3 Write a program using one print statement to print the pattern of asterisks as shown below:

*®

* *

* * *

* * * *

1.4 Write a program that will print the following figure using suitable characters.

J— _

el

1.5 Given the radius of a circle, write a program to compute and display its area. Use a symbolic
constant to define the ©t value and assume a suitable value for radius.
1.6 Write a program to output the following multiplication table:

S5x1=35
5%x2=10
S5x3=15

1.7

1.8

Overview of C |21

Given two integers 20 and 10, write a program that uses a function add() to add these two
numbers and sub() to find the ditference of these two numbers and then display the sum and
difference in the following form:
20+ 10=30
20-10=10
Given the values of three variables a, b and ¢, write a program to compute and display the
value of x, where
a
b-¢
Execute your program for the following values:
(a) a=250,b=85,¢=25
(b) a=300,b=70,c=70
Comment on the output in each case.

X =

Chapter

Constants, Variables,
and Data Types

THODUCTION

A programming language is designed to help process certain kinds of duta consisting of numbers,
characters and strings and to provide useful output known as information. The 1ask of processing of
data is accomplished by executing a sequence of precise instructions called a program. These in-
structions are formed using certain symbols and words according to some rigid rules known as svizas
rules (or grammar). Evéry program instruction must confirm precisely to the syntax rules of the
fanguage. :

Like any other language. C has its own vocabulary and grammar. In this chapter, we will discuss
the concepts of constants and variables and their types as they relate to C programming language.

LI UMIARACTER SEY

The characters that can be used to form words, numbers and expressions depend upon the computer
on which the program is run. However, a subset of characters is available that can be used on most
personal. micro, mini and mainframe computers. The characters in C are grouped into the following
categories:
. Letters

Digits
Special characters
. White spaces

The entire character set is given in Table 2.1.

The compiler ignores white spaces unless they are a part of a string constant. White spaces may bhe
used to separate words. but are prohibited between the characters of keywords and identifiers.

el)

Constants, Variables, and Data Types I 23

e

Many non-English keyboards do not support all the characters mentioned in Table 2.1. ANSI C
introduces the concept of “trigraph™ sequences to provide a way to enter certain characters that are
not available on some keyboards. Each trigraph sequence consists of three characters (two question
marks followed by another character) as shown in Table 2.2. For example, if a keyboard does not
support square brackets. we can still use them in a program using the trigraphs ??(and ??).

Table 2.1 C Character Set

Letters Digits
Uppercase A....7Z All decimal digits 09

Lowercase a.....z

Special Characters

. comma & ampersand

. peried ~ caret

; semicolon * asterisk

: colon - minus sign

? question mark + plus sign

* apostrophe < opening angle bracket

* quotation mark (or less than sign)

! exclamation mark > closing angle bracket
vertical bar (or greater than sign)

“slash (left parenthesis

\ backslash) right parenthesis

~ tilde [left bracket

_under score] right bracket

S dolar sign { left brace

%% percent sign ! right brace

number sign
White Spaces
Blank space
Horizontal tab
Carriage return
New line
Form feed

Table 2.2 ANSI C Trigraph Sequences

Trigraph sequence Translation
GO # number sign
B [left bracket
27) | right bracket
o

< § left brace

} right brace
201 | vetical bar
2 \ back slash
24D

~ caret
. ~ tilde

24 ' Programming in ANSI C
2.3 C TOKENS
N a passage of text, individual words and punctuation marks are called tokens. Similarly, ina C

program the smallest individual units are known as C tokens. C has six types of tokens as shown in
Fig. 2.1. C programs are written using these tokens and the syntax of the language.

| C TOKENS
e | S
\ e i o
! R S |
1 * | [
| Keywords “ E Constants—k Strings ! | Operator?k
I 1 \
j : , ¢
float ! 155 "ABC" | .
while 100 "year" *
| l
[Identifiers k | Special Symbols
main (]
amount {}

Fig. 2.1 C tokens and examples

2.4 KEYWORDS AND IDENTIFIERS

Every C word is classified as either a keyword or an identifier. All keywords have fixed meanings
and these meanings cannot be changed. Keywords serve as basic building blocks for program state-
ments. The list of all keywords of ANSI C are listed in Table 2.3. All keywords must be written in
lowercase. Some compilers may use additional keywords that must be identified from the C manual.

Table 2.3 ANSI C Keywords

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile

do if static while

Identifiers refer to the names of variables, functions and arrays. These are user-defined names and
consist of a sequence of letters and digits, with a letter as a first character. Both uppercase and
lowercase letters are permitted, although lowercase letters are commonly used. The underscore char-
acter is also permitted in identifiers. It is usually used as a link between two words in long identifiers.

Constants, Variables, and Data Types | 25

e Rules for Identifiers)

First character must be an alphabet (or underscore).
Must consist of only letters, digits or underscore.
Only first 31 characters are significant.

Cannot use a keyword.

Must not contain white space.

U s N =

&

2.5 CONSTANTS

Constants in C refer to fixed values that do not change during the execution of a program. C supports
several types of constants as illustrated in Fig. 2.2.

CONSTANTS
P
gL
/ ™
/ \
/
/" \\
Numeric constants Character constants
\\\ ‘\\\
b\\ / \
/ / \
Integer Real Single character ~ String
constants constants constants constants

Fig. 2.2 Basic types of C constants

Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely, decimal
integer. octal integer and hexadecimal integer.
Decimal integers consist of a set of digits, 0 through 9, preceded by an optional - or + sign. Valid
examples of decimal integer constants are:
123 - 321 0 654321 +78
Embedded spaces, commas, and non-digit characters are not permitted between digits. For exam-
ple.
15 750 20,000 $1000
are illegal numbers. Note that ANSI C supports unary plus which was not defined earlier.
An octal integer constant consists of any combination of digits from the set 0 through 7, with a
leading 0. Some examples of octal integer are:
037 0 0435 0551

26 I Programming in ANSI C

A sequence of digits preceded by Ox or 0X is considered as hexadecimal integer. They may also
include alphabets A through F or a through f. The letter A through F represent the numbers 10 through
I5. Following are the examples of valid hex integers.

0X2 0x9F 0Xbed 0x
We rarely use octal and hexadecimal numbers in prograimming.
The Jargest integer value that can be stored is machine-dependent. It is 22767 on 16-bit machines
and 2,147.483.,647 on 32-bit machines. It is also possible to store larger integer constants on these
machines by appending qualifiers such as U.L and UL to the constants. For examples:
56789U or 56789y {unsigned integer)
987612347UL or 98761234ul (unsigned long integer)
9876543L or 98765431 (long integer)

The concept of unsigned and long integers arc discussed in detail in Section 2.7.

FE;(-G—‘rrEiewﬁﬂ Representation of integer constants on a 16-bit computer.

The program in Fig.2.3 illustrates the use of integer constants on a 16-bit machine. The output in
Fig. 2.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit machine.
However. when they are qualified as long integer (by appending L). the values are correctly stored.

Program
main()
{
printf("Integer values\n\n");
printf("zd %d %d\n", 32767,32767+1,32767+10) ;
printf("\n");
printf("Long integer values\n\n");
printf("s1d %1d %ld\n", 327671,32767L+1L,32767L+10L) ;
}
Output

Integer values
32767 -32768 -32759
Long integer values
32767 32768 32777

Fig. 2.3 Representation of inieger constants on 16-bit machine

e it

Integer numbers are inadequate to represent quantities that vary continuously, such as distances,
heights, temperatures, prices. and so on. These quantiiies are represented by numbers containing

Constants, Variables, and Data Types l 27
fractional parts like 17.548. Such numbers are called real (or floating point) constants. Further ex-
amples of real constants are:

0.0083 - 0.75 435,36 +247.0
These numbers are shown in decimal notation, having a whole number followed by a decimal

point and the fractional part. It is possible o omit digits before the decimal point, or digits after the
decimal point. That is,

2159

N

71 =3
are ali valid real numbers.
A real number may also be expressed i exporiential (or scientific) notation. For example. the
-, = . /= 2
value 213,65 may be written as 2.15635¢2 in exponential notation. e2 means multiply by 10°. The
general form is:

S SERE TR)

The mantissa is either a real number expressed indecimal notation or an integer. The exponent is an
integer number with an optional plus or minus sign. The letter e separating the mantissa and the
exponient can be written in either lowercase or uppercase. Since the exponent causes the decimal
pomt to “float”, this notation is said to represent a real number in floating point form. Examples of
legal tloating-point constants are:

0.65¢4 12¢-2 1.5e+5 3.48L3 -1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very small in
magnitude. For example. 7500000000 may be writien as 7.5E9 or 75E8. Similarly. -0.000000368 is
cquivalent to -3.68E-7.

Floating-point constants are normally represented as double-precision quantities. However. the
suffixes for Fmay be used to force single-preciston and tor L to extend double precision further.

Some examples of valid and invalid numeric constants are given in Table 2.4.

Table 2.4 Examples of Numeric Constants

Constant Valid ? Remarks

GOUISAL Yes Represents long integer
25,000 No Comma is not allowed

FS0ES Yes (ANSI C supports unary plus)
3.5¢e-5 Yes

7.1e 4 No No white space is permitted
-4.5¢-2 Yes

1.5E-2.5 No Exponent must be an integer
S258 No S symbol is not permitted

UxX7B Yes Hexadecimal integer

28 Programming in ANSI C
Single Character Constants

A single character constant (or simply character constant) contains a single character enclosed within
a pair of single quote marks. Example of character constants are:

¢ 5 b SX b 13 ; 9 [
Note that the character constant *5’ is not the same as the number 5. The last constant is a blank
space.
Character constants have integer values known as ASCII values. For example, the statement
printf("%d", 'a');
would print the number 97, the ASCII value of the letter a. Similarly, the statement
printf("%c", '97');
would output the letter “a’. ASCII values for all characters are given in Appendix I1.

Since each character constant represents an integer value, it is also possible to perform arithmetic
operations on character constants. They are discussed in Chapter 8.

String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may be
letters, numbers, special characters and blank space. Examples are:

"He]lo!"«‘ “]987*’ “WELL DONE” u?“.!” 5s5+3” quq

Remember that a character constant (e.g., *X") is not equivalent to the single character string
constant (e.g., “X”). Further, a single character string constant does not have an equivalent integer
value while a character constant has an integer value. Character strings are often used in programs to
build meaningful programs. Manipulation of character strings are considered in detail in Chapter 8.

Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For example,
the symbol “\n’ stands for newline character. A list of such backslash character constants is given in
Table 2.5. Note that each one of them represents one character, although they consist of two charac-
ters. These characters combinations are known as escape sequences.

Table 2.5 Backslash Character Constants

Constant Meaning
“\a’ audible alert (bell)
“\b’ back space
“f form feed
“\n’ new line
Ar’ carriage return
“t° horizontal tab

(Contd.)

Constants, Variables, and Data Types

Table 2.5 (Contd.)

|29

Constant Meaning

e vertical tab
“\ single quote

L ane

\ double quote

N?* question mark
A\ backslash

N\O° null

2.6 VARIABLES

A variable 1s a data name that may be used to store a data value. Unlike constants that remain
unchanged during the execution of a program, a variable may take different values at different times
during execution. In Chapter 1, we used several variables. For instance, we used the variable amount
in Sample Program 3 to store the value of money at the end of each year (after adding the interest

earned during that year).

A variable name can be chosen by the programmer in a meaningful way so as to reflect its function

or nature in the program. Some examples of such names are:
Average
height
Total
Counter |
class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) charac-

ter, subject to the following conditions:

1. Thev must begin with a letter. Some systems permit underscore as the first character.

2. ANSIstandard recognizes a length of 31 characters. However, length should not be normally
more than eight characters, since only the first eight characters are treated as significant by

many compilers.

3. Uppercase and lowercase are significant. That is, the varible Total is not the same as total or

TOTAL.
4. It should not be a keyword.
5. White space is not allowed.
Some examples of valid variable names are:

John Value T raise
Delhi x1 ph_value
mark suml| distance

Invalid examples include:

123 (area)
% 25th

Further examples of variable names and their correctness are given in Table 2.6.

30 I Programming in ANSI C

Table 2.6 Examples of Variable Nawmes

Variable name Valid ? Remark
First tag Valid
char Not valid charis a keyword

- Price$ Not valid ‘ Dotlar sign 1s illegal
group one Not vahid Blank space s not permitted
average nuinber Valid First eight characters are signiticant
int_tvpe Valid Kevword may be part of a name

If only the first eight characters are recognized by a compiler, then the two names

average height
average weight

mean the same thing to the computer. Such names can be rewritten as

avg_height and avg_weight
or
ht_average and wt_average

without changing their meanings.

27O RATE A Y

C language is rich inits data tvpes. Storage representations and machine mstructions to handle con-
stants differ from machine to machine. The variety of data types available alloyw the programmer 1o
select the type appropriate to the needs of the application as well as the machine.

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types
2. Derived data types
3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-detined data
types are defined in the next section while the derived data types such as arrays. functions, structures
and pointers are discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character (char). float-
ing point ¢float), double-precision floating point (double) and void. Many of them also offer ex-
tended data types such as long int und long double. Various data types and the terminology used to
describe them are given in Fig. 2.4. The range of the basic four types are given in Table 2.7. We
discuss briefly each one of them in this section.

Coastants, Variables, and Data Types I 31

PRIMARY DATA TYPES ‘
Integral Type |
S R
! P i
integer | Character | |
— - - —————————— e e I
: signed unsigned type ' ; : c.har | } ‘
Pobing unsigned int P signed char ! !
i shortint unsigned short int i1 i ! unsigned char R
o ‘ i long int unsigned long int P L !

Floating point Type : i

R e e e e e et e i void
fioat double Leng double

U | i

Fig. 2.4 Primary data tvpes in C

Table 2.7 Size and Range of Basic Data Types on 16-bit Machines

Duta nvpe Range of values

char 128 to 127

mnt 32,768 to 32.767
float 3. 4e--38 10 3.4e+e38
doubie I 7¢-308 to 1.7e+308

Integers arc whole numbers with a range of values supported by a particular machine. Generally.
integers occupy one word of storage. and since the word sizes of machines vary (typically. 16 or 32
bits) the size of an integer that can be stored depends on the computer. If we use a 16 bit word length,
the size of the integer value is limited to the range 32768 1o +32767 (that is. 2" t0 +2'°-1). A
signed integer uses one bit for sign and 15 bits for the magnitude of the number. Similarly. a 32 bit
word length can store an integer ranging from -2,147.483.648 10 2.147.483.,647.

In order to provide some control over the range of numbers and storage spacce, C has three classes
of integer storage, namely short int, int, and long int, in both signed and unsigned forms. ANSI C
defines these types so that they can be organized from the smallest to the largest. as shown in Fig. 2.5.
Forexample.shortint represents fairly small integer values and requires halt the amount of storage
as aregularint number uses. Unlike signed integers. unsigned integers use all the bits for the magni-
tude of the number and are always positive. Therefore, for a 16 bit machine, the range of unsigned
integer numbers will be trom 0 10 65.533.

32 Programming in ANSI C

short int l

int

long int

Fig. 2.5 Integer types

We declare long and unsigned integers to increase the range of values. The use of qualifier signed
on integers is optional because the default decldration assumes a signed number. Table 2.8 shows all
the allowed combinations of basic types and qualifiers and their size and range on a 16-bit machine.

Table 2.8 Size and Range of Data Types on a 16-bit Machine

Type Size (bits)
char or signed char 8
unsigned char 8
int or signed int 16
unsigned int 16

short int or

signed short int 8
unsigned short int 8
long int or

signed long int 32
unsigned long int 32
float 32
double 64
long double &0

Floating Point Types

Range

-128 to 127

0 to 255

-32,768 to 32,767
0 to 65535

~128 to 127
0 to 255

—2,147.483.648 to 2,147,483.647
0 to 4,294,967,295

34E - 38 to 3.4E + 38

1.7E — 308 to 1.7E + 308

34E - 4932 to 1.1E + 4932

Floating point (or real) numbers are stored in 32 bits (on all 16 bitand 32 bit machines), with 6 digits
of precision. Floating point numbers are defined in C by the keyword float. When the accuracy
provided by a float number is not sufficient, the typce double can be used to define the number. A
double data type number uses 64 bits giving a precision of 14 digits. These are known as double
precision numbers. Remember that double type represents the same data type that float represents,
but with a greater precision. To extend the precision further, we may use long double which uses 80
bits. The relationship among floating types is illustrated in Fig. 2.6.

~
|

i float

1 double

E long double

Fig. 2.6 Floating-point types

Constants, Variables, and Data Types | 33
Yoid Types

The void type has no values. This is usually used to specify the type of functions. The type of a
function is said to be void when it does not return any value to the calling function. It can also play the
role of a generic type, meaning that it can represent any of the other standard types.

Charscter Types

A single character can be defined as a character(char) type data. Characters are usually stored in &
bits (one byte) of internal storage. The qualifier signed or unsigned may be explicitly applied to
char. While unsigned chars have values between 0 and 255, signed chars have values from-128 to
127.

2.8 DUECLARATION OF VARIABLES

After designing suitable variable names, we must declare them to the compiler. Declaration does two
things:

I. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.
The declaration of variables must be done before they are used in the program.

Peumary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do with its
type. The syntax for declaring a variable is as follows:

datar-ivpe vlw2ivn g
vl,v2,...vnare the names of variables. Variables are separated by commas. A declaration statement

must end with a semicolon. For example, valid declarations are:

int count;
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respectively.
Table 2.9 shows various data types and their keyword equivalents.

Table 2.9 Data Types and Their Keywords

Data type Keyword equivalent
Character char

Unsigned character unsigned char
Signed character signed char

Signed integer signed int (or int)

(Contd.)

34 I Programming in ANSIC

Duta tvpe Kevword cquivalent
Signed short mteger stgned short it
(or short int or short)
Signed long integer signed long int
(or tong int or long)
Unsigned integer unsigned int (or unsigned)
Unsigned short integer unsigned short int
(or unsigned short)
Unsigned long integer unsigned long int
(or unsigned long)
Floating pomt float
Double-precision
floating point double
Extended double-precision
floating point long double

The program segment given in Fig. 2.7 illustrates declaration of vartabies. main() s the begimning
of the program. The opening brace | signals the execution of the program. Declaration of variables is
usuaily done immediately after the opening brace of the program. The variables can also be declared
outside (either before or after) the main function. The importance of place of declaration will be deah
in detail later while discussing functions.

main{) /*......... Program Name.o.erireneennnnnnn. */
{
S Declaration.....cveveuunn. . ce x/
float X, Y3
int code;

short int count;

long int amount;
double deviation;
unsigned n;
char c:
) CompULAtION. i e et ee e ennn
b/ Program ends.......oeveuvunnnn. e *;

Fig. 2.7 Declaranon of vaiables

When an adjective (qualitier) short, long, or unsigned is used without a basic data type specifier.
C compilers treat the darta type as anint. If we want to declare a character variable as unsigned. then
we must do so using both the terms like unsigined char.

Constants, Variables, and Data Types

|35

9

Default values of Constants

Integer constants, by default, represent int type data. We can override this de-
fault by specifying unsigned or long after the number (by appending U or L) as
shown below:

Literal Type Value
1 int (RN
-222 int -222
45678U unsigned int 45,678
~567891 fong int -56,789
98765401 unsigned long int 9,87,654

Similarly, floating point constants, by default repre<ent double type data. If we
want the resulting data type to be float or long double, we must append the
letter { or F 1o the number for float and letter | or L for long double as shown

bhelow.
Literal Type Value
0. double 0.0
0 double 0.0
12.0 double 12.0
1.234 double 1.234
.20 float -1.2

1.234567891 long double 23456789

-/ _ Y

EYIE O B RS RES

C supports a feare known as “type detinition™ that allows users to define an identifier that would
represent an existing data type. The user-defined data type identifier can later be used to declare
variables . It tukes the general form:

Where npe refers to an existing data type and “identifier” refers to the “new™ name given to the
data type. The existing data type may belong to any class of type, including the user-defined ones.
Remember that the new type is “new” only in name, but not the data type. typedefcannot create a new
type. Some examples of type definition are:

typedef int units;
typedef float marks;

Here, units symbolizes int and marks symbolizes float. They can be later used to declare vari-
ables as follows:

units batchl, batch2;

marks namel[50], name2[50];
batch! and batch2 are inclared as int variable and name1[50] and name2[50] are declared as 50
clement floating point array variables. The main advantage of typedef is that we can create meaning-
ful data type names tor increasing the readability of the program.

36 Programming in ANSI C

Another user-defined data type is enumerated data type provided by ANSI standard. It is defined
as follows:

coun identifier {vaelucl, valuc2, ... vakeonl:

The “identifier” is a user-defined enumerated data type which can be used to declare variables that
can have one of the values enclosed within the braces (known as enumeration constants). After this
definition, we can declare variables to be of this ‘new” type as below:

enum identifier v1, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values valuel, value2, ... valuen.
The assignments of the following types are valid:

vl = value3;
vb = valuel;
An example:
enum day {Monday,Tuesday, ... Sunday};
enum day week_st, week_end;

week_st = Monday;

week_end = Friday;

if(week st == Tuesday)
week_end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration con-
stants. That is, the enumeration constant valuel is assigned 0, value2 is assigned 1, and so on. How-
ever, the automatic assignments can be overridden by assigning values explicitly to the enumeration
constants. For example:

enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values
that increase successively by 1.
The definition and declaration of enumerated variables can be combined in one statement. Exam-

ple:
enum day {Monday, ... Sunday]} week_st, week end;

2.9 DECLARATION OF STORAGE CLASS ‘

Variables in C can have not only data fvpe but also storage class that provides information about
their location and visibility. The storage class decides the portion of the program within which the
variables are recognized. Consider the following example:
/* Example of storage classes */
int m;

main()

Constants, Variables, and Data Types I 37

int i;
float balance;

functionl();
}
functionl()
{
int i;
float sum;

}

The variable m which has been declared before the main is called global variable. It can be used
in all the functions in the program. It need not be declared in other functions. A global variable is also
known as an external variable.

The variables i, balance and sum are called local variables because they are declared inside a
function. Local variables are visible and meaningful only inside the functions in which they are
declared. They are not known to other functions. Note that the variable i has been declared in both the
functions. Any change in the value of i in one function does not aftect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicitly the scope and
lifetime of variables. The concepts of scope and lifetime are important only in multifunction and
multiple file programs and therefore the storage classes are considered in detail later when functions
are discussed. For now, remember that there are four storage class specifiers (auto, register, static,
and extern) whose meanings are given in Table 2.10.

The storage class is another qualifier (like long or unsigned) that can be added to a variable
declaration as shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic (auto) vari-
ables contain undefined values (known as ‘garbage’) unless they are initialized explicitly.

Table 2.10 Storage Classes and Their Meaning

Storage class Meaning

auto Local variable known only to the function in which it is declared. Default
is auto.

static Local variable which exists and retains its value even after the control is
transferred to the calling function.

extern Global variable known to all functions in the file.

register Local variable which is stored in the register.

38 Programming in ANSI C

Vartables are created for use in program statements such as
value = amount + inrate * amount;
while (year <= PERIOD)

year = year + 1;
}

In the first statement. the numeric value stored in the variable inrate is multiplied by the value
stored in amount and the product is added to amount. The result is stored in the variable value, This
process is possible only if the variables amount and inrate have already been given values. The
variable value is called the rarget variable. While all the variables are declared for their type. the
variables that are used in expressions (on the right side of equal (=) sign of a computational state-
ment) must be assigned values before they are encountered in the program. Similarly. the variable
vear and the symbolic constant PERIOD in the while statement must be assigned values before this
statement is encountered.

% 4, 0t e < 4
SR trfE el TRl et

Values can be assigned to variables using the assignment operator = as follows:

We have already used such statements in Chapter 1. Further examples are:

initial value = 0;
final value = 100;
balance = 75.84;
yes = 'x'y

C permits multiple assignments in one line. For example
initial_value = 0; final_value = 100;
are valid statements.
An assignment statement implics that the value of the variable on the lett of the “equal sign” 15 set
equal to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the ‘new value’ of year is equal to the *old value’ of year plus 1.

During assignment operation, C converts the type of value on the right-hand side 1o the type on the
left. This may involve truncation when real value is converted to an integer.

[t 15 also possible to assign a value to a variable at the time the variable is declared. This takes the
following form:

Constants, Variables, and Data Types 39

Some examples are:

int final value = 100,

char yes = 'x';
double balance = 75.84;
The process of giving initial values to variables is calledinitialization. C permits the initialization
of more than one variables in one statement using multiple assignment operators. For example the
statements

=S=0;

pP=9
X =y = MAX;

are valid The first statement initializes the variables p. g, and s to zero while the second mitializes x,
v, and z with MAX. Note that MAX is a symbolic constant defined at the beginning.

Remember that external and static variables are initialized to zero by defaridt. Automatic variables
that are not initialized explicitly will contain garbage.

[Example 2.2l Program in Fig. 2.8 shows typical declarations, assignments and valuss
L <)
——— = «tored in various fypes of variables.

The variables x and p have been declared as floating-point variables. Note that the way the value
of 1.234567890000 that we assigned to x is displayed under diffcrent output tormats. The value ofx
is displaved as 1.234567880630 under 0,.121f tormat, while the actual value assigned 1s
] 234567%90000. This is because the variable x has been declared as a float that can store values
enly up to six decimal places.

The variable m that has been declared as intis not able to store the value 54321 correctly. Instead,
it contains some garbage. Since this program was run ona 16-bit machine, the maximum value that
an int variable can store is only 32767. However, the variable k (declared as unsigned) has stored
the value 34321 correctly. Similarly, the long int variable n has stored the value 1234567890 cor-
rectly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value 1s
printed as 9.876543 under %olf format. Note that unless specitied otherwise, the printf function will
always display afloat ordouble value to sin decimal places. We will discuss later the output formats
for displaying numbers.

Program

float X, P 3
double ¥,q 3
unsigned k ;

[F e DECLARATIONS AND ASSIGNMENTS............ */
int m = 54321 ;
Tong int n = 1234567890 ;

[ASSIGNMENT S . vt i et i i enaane >/

x = 1.234567890000 ;

40 Programming in ANSI C

y = 9.87654321 ;
k = 54321 ;
p=qg=1.0;
JE e PRINTING. « v ettt e e e */
printf("m = %d\n", m) ;
printf(“n = %1d\n", n) ;
printf("x = %.121f\n", x) ;
printf("x = %f\n", x) ;
printf("y = %.121f\n",y) ;
printf("y = Z1f\n", y) ;
printf("k = %u p = %f q = %.121f\n", &, p, q) ;
}
Output
m = -11215
n = 1234567890
X = 1.234567880630
X = 1.234568
y = 9.876543210000
y = 9.876543
k = 54321 p = 1.000000 g = 1.000000000000

Fig. 2.8 Examples of assignments

Reading Data from Keyboord

Another way of giving values to variables is to input data through keyboard using the scanf function.
It is a general input function available in C and is very similar in concept to the printf function. It
works much like an INPUT statement in BASIC. The general format of scanf is as follows:

scant(*‘control string”, & variablel &Xvariable2,....);

The control string contains the format of data being received. The ampersand symbol & before each
variable name is an operator that specifies the variable name's address. We must always use this
operator, otherwise unexpected results may occur. Let us look at an example:

scanf("%d", &number);

When this statement is encountered by the computer, the execution stops and waits for the value of
the variable number to be typed in. Since the control string “%d” specifies that an integer value is to
be read from the terminal, we have to tvpe in the value in integer form. Once the number is typed in
and the ‘Return” Key is pressed. the computer then proceeds to the next statement. Thus, the use of
scanfprovides an interactive feature and makes the program “user friendly’. The value is assigned to
the variable number.

Constants, Variables, and Data Types |41

[Example 2.3] The program in Fig. 2.9 illustrates the use of scanf function.

U

The first executable statement in the program is a printf, requesting the user to enter an integer
number. This is known as “prompt message” and appears on the screen like

Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the value with
100. 1f the value typed in is less than 100. then a message

Your number is smaller than 100
is printed on the screen. Otherwise, the message
Y our number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig. 2.9.

Program
main()

{

int number;

printf("Enter an integer number\n");
scanf ("%d", &number);

if (number < 100)
printf("Your number is smaller than 100\n\n");
else
printf("Your number contains more than two digits\n");

Qutput
Enter an integer number
54
Your number is smaller than 100
Enter an integer number
108
Your number contains more than two digits

Fig. 2.9 Use of scanf function for interactive computing

Some compilers permit the use of the “prompt message” as a part of the control string inscanf, like
scanf("Enter a number %d" ,&number) ;

We discuss more about scanf in Chapter 4.
In Fig. 2.9 we have used a decision statement if...else to decide whether the number is less than
100. Decision statements are discussed in depth in Chapter 5.

Example 2.4| Sample program 3 discussed in Chapter 1 can be converted info a
. more flexible interactive program using scanf as shown in Fig. 2.10.

42 l Programming in ANSI C
In this case. computer requests the user o input the values of the amount to be invested, interest
rate and period of investment by printing a prompt message
[nputamount, interest rate, and period

and then waits for input values. As soon as we finish entering the three values corresponding to the

Program
main()
{
int year, period ;
float amount, inrate, value :
printf(“Input amount, interest rate, and period\n\n®) ;
scanf ("4f %f 5d", &amount, &inrate, &period) ;
printf("\n") ;
year = 1 ;
while(year <= period)
i
value = amount + inrate * amount ;
printf("s2d Rs %8.2f\n", year, value) ;
amount = value ;
year = year + 1 ;
}
}
Output
Input amount, interest rate, and period
10000 6.14 5
1 Rs 11400.00
2 Rs 12996.00
3 Rs 14815.44
4 Rs 16889.60
5 Rs 19254.15

Input amount, interest rate, and period
20000 0.12 7

Rs 22400.00
Rs 25088.00
Rs 28098.56
Rs 31470.39
Rs 35246.84
Rs 39476.46
Rs 44213.63

NG B W N

Fig. 2.10 Interactioe investment program

Constants, Variables, and Data Types | 43

three yariables amount, inrate, and period, the computer begins to calculate the amount at the end
of cach vear, up to “period” and produces outputas shown in Fig. 2.10.

Note that the seanf function contains three variables. n such cases, care should be exercised to see
that the values entered match the orderand rvpe of the variables in the list. Any mismatch might lead
to nnespected results. The compiler may not detect such errors.

TG SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeatedly in a
number of places in the program. One example of such a constant is 3.142, representing the value of
the mathematical constant *pi™. Another example is the total number of students whose mark-sheets
Lie analvsed by a “test analysis program’. The pumber of students. say 50. may be used for calculat-
ine the class total, class average. standard deviation, etc. We face two problems in the subsequent use
of such programs,

}. Problem in modification of the program.

2. Problem in understanding the program.

We may like to change the value of “pt” from 3.142 to 3.14159 to improve the accuracy of calcula-
tions or the number 50 to 100 to process the test results of another class. In both the cases, we will
ha ¢ to search throughout the program and explicitly change the value of the constant wherever it has
heen used. It any value is left unchanged, the program may produce disastrous outputs.

\When a numeric value appears in a program, its use is not always clear, especially when the same
« alue means difterent things in different places. For example. the number 50 rmay mean the number ot
students at one place and the “pass marks® at another place of the same program. We may forget what
+ cortain number meant, when we read the program some days later.

Assignment of such constants to a symbolic nane frees us from these problems. For example, we
may use the name STRENGTH to define the number of students and PASS_MARK to define the
pass marks required n a subject. Constant values are assigned to these names at the beginning of'the
program. Subsequent use of the names STRENGTH and PASS_MARK in the program has the
effect of causing their defined values to be automatically substituted at the appropriate points. A
constant is defined as follows:

Valid examples of constant detinitions are:
#define STRENGTH 100
#define PASS MARK 50

44

Programming in ANSI C

#define MAX 200
#define PI 3.14159

Symbolic names are sometimes called consiant identifiers. Since the symbolic names are con-
stants (not variables), they do not appear in declarations. The following rules apply to a #define
statement which define a symbolic constant.

l.

W

W

Symbolic names have the same form as variable names. (Symbolic names are written in
CAPITALS to visually distinguish them from the normal variable names. which are written in
lowercase letters. This is only a convention, not a rule.)

No blank space between the pound sign “#' and the word define is permitted.

‘#’ must be the first character in the line.

A blank space is required between #define and symbolic name and between the symbolic
name and the constant.

. #define statements must not end with a semicolon.

After definition. the symbolic name should not be assigned any other value within the program
by using an assignment statement. For example, STRENGTH = 200: is illegal.

Symbolic names are NOT declared for data types. Its data type depends on the type of
constant,

- #define statements may appear amwhere in the program but before it is referenced in the

program (the usual practice is to place them in the beginning of the program).

#define statement is a preprocessor compiler directive and is much more powerful than what has
been mentioned here. More advanced types of definitions will be discussed later. Table 211 illus-
trates some invalid statements of #define.

Table 2.11 Examples of Invalid #define Statements

Statement Validity Remark

#define X = 2.5 Invalid =" s1gn is not allowed

define MAX 10 Invalid No white space between # and define
#define N 25; Invalid No semicolon at the end

#define N 5, M 10 Invalid A statement can define only one name.
#Define ARRAY 11 Invahd define should be in lowercase letters
#define PRICES 100 Invahd $ symbol 1s not permitted in name

2.12 DECLARING A VARIABLE AS CONSTA™ T

We may like the value of certain variables to remain constant during the execution of a program. We
can achieve this by declaring the variable with the qualifier const at the time of initialization. Exam-

ple:

const int class size = 40;

const is a new data type qualifier defined by ANS| standard. This tells the compiler that the value of
the int variable class_size must not be modificd by the program. However, it can be used on the
right_hand side of an assignment statement like anv other variable.

Constants, Variables, and Data Types |45
Sy DECLARING A VARTABIFE AS VOLATILE

ANSI standard defines another qualifier volatile that could be used to tell explicitly the compiler that
a variable’s value may be changed at any time by some external sources (from outside the program).
For example:

volatile int date;

The value of date may be altered by some external factors even if it does not appear on the left-
hand side of an assignment statement. When we declare a variable as volatile. the compiler will
examine the value of the variable each time it is encountered to see whether any external alteration
has changed the value.

Remember that the value of a variable declared as volatile can be modified by its own program as
well 1f we wish that the value must not be modified by the program while it may be altered by some
other process, then we may declare the variable as both const and volatile as shown below:

volatile const int iocatien = 100;

~ 14 OVERFLOW AND UNDERFLOW OF DATA

Problem of data overflow occurs when the value of a variable is either too big or too small tor the data
type to hold. The largest value thata variable can hold also depends on the machine. Since floating-
point values are rounded off to the number of significant digits allowed (or specitied). an overflow
normally results in the largest possible real value, whereas an undertlow results in zero.

[ntegers are always exact within the limits of the range of the integral data types used. However.
an overflow which is a serious problem may occur if the data type does not match the value of the
constant. C does not provide any warning or indication of integer overflow, It simply gives incorrect
results. (Overflow normally produces a negative number.) We sheuld therefore exercise a greater
care to define correct data types for handling the input’output values.

Just Remember

#3 Do not use the underscore as the first character of identifiers (or variable names)
because many of the identifiers in the svstem library start with underscore.

£5 Use only 31 or less characters tor identitiers. This helps ensure portability of
programs.

#5 Do not use keywords or any system library names tor identifiers.

#5 Use meaningful and intelligent variable names.

#2 Do not create variable names that differ only by one or two letters.

#5 Each variable used must be declared for its type at the beginning of the program
or function.

#3 All variables must be initialized before they are used in the program.

#3 Integer constants, by default. assume int types. To make the numbers long or
unsigned, we must append the letters L and U to them.

#3 Floating point constants default to double. To make them to denote float orlong
double, we must append the letters F or L to the numbers.

46| Programming in ANSIC

#3 Do not use lowercase | for long as 1t 1s usually confused with the number 1.

#3 Use single quote for character constants and double guotes for string constants.

49 A character is stored as an integer. Itis therefore possible to perform arithmetie
operations on characters.

3 Do not combine declarations with executable statements.

Z3 A variable can be made constant either by using the preprocessor coniinand
#define at the beginning of the program or by declaring it vath the qualifios
const at the time of initialization.

Z5 Do not use semicolon at the end of #define directive.

#3 The character # should be in the first column.

43 Do not give any space between # and define.

#3C does not provide any warning or indication of overflow. It simply gives
incorrect results. Care should be exercised indefining conect daia ts pe

£3 A variable defined before the main tunction is available to all the functions i the
program.

& A variable defined inside a function is local 1o that functon and not available to
other functions

CASE STUTHEY

LoCaloulation ol Sverage o Neners

A program to calculate the average of a set of N nurnbers is given in Fig. 2,11

Program
#define N 10 /* SYMBOLIC CONSTANT =/
main()
1
nt count /* DECLARATION OF */
float sum, average, number ; /* VARIABLES */
sum =0 ; /* INITIALIZATION */
count = 0 ; /* OF VARIABLES */
while(count < N)
{
scanf("%f", &number) ;
sum = sum + number ;
count = count + 1 ;
}
average = sum/N ;
printf("N = %d Sum = %f", N, sum);
printf(" Average = %f", average);
}

Constants, Variables, and Data Types I 47

NN OO
o~

— o

N o= 10 Sum = 38.7999993 Average = 3.880000

Fig. 2.11 Adverage of N numbers

The viriable number is declured as float and therefore it can take both integer and real numbers.
Stnee the symbolic constant N is assigned the value of 10 using the #define statement, the program
aceepts ten values and caleulates their sum using the while loop. The variable count counts the
number of values and as soon as it becomes 11, the while loop is exited and then the average 15
calcunlated.

Notice that the actual vatue of sum is 3%.8 but the value displayed is 38.799999. In fact, the actual
value that is displayed is quite dependent on the computer system. Such an inaccuracy is due to the
wav the floming point numbers are internally represented inside the computer.

-
b

Phe progiam presented in Fig. 2,12 converts the given temperature in fahrenheit to celsius using the
tollowing conversion tormula:

_F-32
1.8
Program

#define F LOW 0 [F e */
#define F MAX 250 /* SYMBOLIC CONSTANTS */
#idefine STEP 25 [e */
main()
{

typedef float REAL ; /* TYPE DEFINITION */

REAL fahrenheit, celsius ; /* DECLARATION */

fahrenheit = F _LOW ; /* INITIALIZATION */
printt("Fanhrenheit Celsius\n\n") ;

while(fahrenheit <= F _MAX)

{

celsius = (fahrenheit - 32.0) / 1.8 ;

48 l Programming in ANSI C

printf(" %5.1f %7.2f\n", fahrenheit, celsius);
fahrenheit = fahrenheit + STEP ;

}
1
Output
Fahrenheit Celsius
0.0 -17.78
25.0 -3.89
50.0 10.00
75.0 23.89
100.0 37.78
125.0 51.67
150.0 65.56
175.0 79.44
2060.0 93.33
225.0 107.22
250.0 121.11

Fig. 2.12 Temperature conversion—fahrenheit-celsius

The program prints a conversion table for reading temperature in celsius, given the fahrenheit
values. The minimum and maximum values and step size are defined as symbolic constants. These
values can be changed by redefining the #define statements. An user-defined data type naine REAL
15 used to declare the variables fahrenheit and celsius.

The formation specifications %5. 1t and %7.2 in the second printfstatement produces two-column
output as shown. '

REVIEW QUESTIONS

2.1 State whether the following statements are true or fulse.
(a) Any valid printable ASCII character can be used in an identifier.
(b) All variables must be given a type when they are declared.
(¢) Declarations can appear anywhere in a prograim.
(d) ANSI C treats the variables name and Name to be same.
(e) The underscore can be used anywhere in an identifier.
(1) The keyword void is a data type in C.
(g) Floating point constants, by default, denote float type values.
{h) Like variables, constants have a type.
(1) Character constants are coded using double quotes.
(J) Initiahzation is the process of assigning a value to a variable at the time ot declaration.
(k) All static variables are automatically initialized to zero.
(I) The scanf function can be used to read only one value at a time.
2.2 Fillin the blanks with appropriate words.
(a) The keyword __ cun be used to create a data type identifier.
(b) isthe largest value that an unsigned short int type variable can store.

[§9)

(%)

(%]

ra o to

[RS R O]

A0

11
12

FeN

tN

16

19

20

Constants, Variables, and Data Types |49

(¢) A global variable is also knownas __ variable.

(d) A variable can be made constant by declaring it with the qualifier at the time
of initialization.

What are trigraph characters? How are they usetul?

Describe the four basic data types. How could we extend the range of values they represent?

What is an unsigned integer constant? What is the significance of declaring a constant un-

signed?

Describe the characteristics and purpose of escape sequence characters.

What is a variable and what is meant by the “value” of a variable?

How do variables and symbolic names differ?

State the differences between the declaration of a variable and the definition of a symbolic

nae.

What is initialization? Why is it important?

What are the qualifiers that an int can have at a time?

A programmer would like to use the word DPR to declare all the double-precision floating

point values in his program. How could he achieve this?

What are enumeration variables? How are they declared? What is the advantage of using

them in a program?

Describe the purpose of the qualifiers const and volatile.

When dealing with very small or very large numbers, what steps would you take to improve

the accuracy of the calculations?

Which of the following are invalid constants and why?

0.0001 3x1.5 99999

+100 7545 E-2 “15.75”

-45.6 ~-1.79e+4 0.00001234

Which of the following are invalid variable names and why?
Minimum First.name nl+n2 &name
doubles 3rd_row n$ Row|
float Sum Total Row Total (Column-total
Find errors, if'any. in the following declaration statements.
Int x;

float letter,DIGIT;

double = p,q

exponent alpha,beta;
m,n,z: INTEGER
short char c;

long int m; count;
long float temp;

What would be the value of x after execution of the folowing statements?
int x, y = 10;

char z = 'a';

X =y +z;

[dentify syntax errors in the following program. After corrections, what output would you
expect when vou execute it?

50 I Programming in ANSI C
#define PI 3.14159

main()
{
int R,C; /* R-Radius of circle
float perimeter; /* Circumference of circle */
float area; /* Area of circle */
C =PI
R = 5;
Perimeter = 2.0 * C *R;
Area = C*R*R;
printf("%f", "%d",&perimeter,&area)
}
PROGRAMMING EXERCISES
2.1 Write a program to determine and print the sum of the following harmonic series for a ziven
value of n:
T+ 172413+ .+ I
The value of n should be given interactively through the terminal.
2.2 Write a program to read the price of an item in decimal form (like 15.95) and print the outpun
in paise (like 1595 paise).
2.3 Write a program that prints the even numbers from | to 100.
2.4 Write a program that requests two float type numbers from the user and then divides the Tirt
number by the second and display the result along with the numbers.
2.5 The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15, Write a program 1o ol

these values from the user and display the prices as follows:
¥ LIST OF ITEMS *#*

ltem Price

Rice Rs 16.75

Sugar Rs 15.00

